
September 2012 FoxRockX Page 5

methods provide that, as well. We have an applica-
tion property, lIsDirty. Whenever we save data or
open a new data file, we clear that property. The
Assign method (from Listing 1) includes the addi-
tional line of code shown in Listing 2 inside the IF;
we use the same code in the Assign methods of all
properties where a change indicates that the data is
now different than it was at the last save.

Listing 2. One line of code in an Assign method (plus a little
application-level code) lets you keep track of whether data has
changed since it was last saved.
goApp.lIsDirty = .T.

In the Library application, we already have a lot
of the framework in place for keeping an application-
wide "dirty" flag. Each form has the lDataChanged
property (described in my March, 2012 article).
We can use those properties to determine whether
there's any unsaved data in the application. To do
so, we add an Assign method to lDataChanged in
frmBase. That method calls an application object
method to update the application-wide "dirty" flag.

Just to demonstrate another possibility,
lDataChanged_Assign also updates the form
caption so that whenever there's unsaved data, it
includes an asterisk. (The VFP editor does the same
thing.) The method is shown in Listing 3.

Listing 3. This code in the Assign method of the form's
lDataChanged property aids in keeping an application-wide
"dirty" flag, and has each form's Caption indicate whether it
currently has unsaved changes.
LPARAMETERS tuNewValue
This.lDataChanged = tuNewValue

* Set app-level dirty flag
IF VARTYPE("goApp") = "O" AND ;
 NOT ISNULL(goApp) AND ;
 PEMSTATUS(goApp, "SetDirtyFlag", 5)
 goApp.SetDirtyFlag(m.tuNewValue)
ENDIF

* Update form caption
IF m.tuNewValue
 IF RIGHT(This.Caption, 1) <> "*"
 This.Caption = This.Caption + " *"
 ENDIF
ELSE
 IF RIGHT(This.Caption, 1) = "*"
 This.Caption = LEFT(This.Caption, ;
 LEN(This.Caption)-2)
 ENDIF
ENDIF

In my last article, I introduced Access and Assign
methods and showed some examples of Access
methods. This time, I’ll explore Assign methods,
which fire when the corresponding property chang-
es, essentially giving you a „property changed“
event.
I've found more ways to use Assign methods than
Access methods. Although an Assign method lets
you change the value assigned, I rarely use that
capability. More often, my Assign method code
lets me ensure that additional things happen when
the value is saved. Often, the goal is encapsulation;
by using an Assign method, I keep the code that
changes a property from having to know what a
change in that property affects.

As with the Access method article and the
two on BindEvent() that preceded it, some of the
examples here are drawn from a sample Library
application I created, which is included in this
month’s downloads.

Updating a timestamp
In one of my client applications, we track the current
value (the "Actual Value") of each of a set of items.
These values are read from actual hardware and we
want to know not just the value, but when it was
read. A business object contains the information
for a single item; there's a collection of such items.
The business object has a cActual property for the
current value and a tLastRead property for the
timestamp. An Assign method for cActual updates
tLastRead, as in Listing 1.

Listing 1. The Assign method for a property that tracks values
read from hardware updates the timestamp for the value.
LPARAMETERS tuNewValue

IF NOT (ALLTRIM(THIS.cActual) == ;
 ALLTRIM(m.tuNewValue))
 THIS.cActual = m.tuNewValue

 * Set last read time.
 THIS.tLastRead = DATETIME()
ENDIF

Set a "dirty" flag
The code in Listing 1 is actually only part of what
we do when we read a new hardware value. We
need a way to know whether the data has changed
since it was last stored, that is, a "dirty" flag. Assign

Using Assign methods
Assign methods let you take action when a property changes.

Tamar E. Granor, Ph.D.

Page 6 FoxRockX September 2012

The application object's SetDirtyFlag meth-
od, along with an application object property,
 lUnsavedData, does the rest of the job. SetDirtyFlag,
shown in Listing 4, checks the value passed to it; if
it's .T., some form has unsaved data, so the fl ag is
set to .T. If the parameter is .F., we know that at
least one form has just either saved data or restored
the previous data, but we don't know the state of
the other forms, so we loop through them until we
fi nd one with unsaved data.

 Listing 4. This method manages an application-wide "dirty"
fl ag, so that we can know just by checking a single property
whether there's any unsaved data.
PROCEDURE SetDirtyFlag(lNewValue)
* Set the application dirty fl ag. If the
* parameter is true, then some form has
* changed data, and we can just set this fl ag.
* If the parameter is false, some form has
* just saved or reverted its changed data
* and we need to look at all open forms.

IF m.lNewValue
 This.lUnsavedData = .T.
ELSE
 This.lUnsavedData = .F.
 FOR EACH oForm IN _VFP.Forms FOXOBJECT
 IF PEMSTATUS(oForm, "lDataChanged", 5)
 IF oForm.lDataChanged
 This.lUnsavedData = .T.
 * No need to fi nd more than one
 EXIT
 ENDIF
 ENDIF
 ENDFOR
ENDIF

RETURN

In most data-entry applications, the next step
would be to check the "dirty" fl ag on exit and
prompt the user to save changes if there's unsaved
data. The Library application was designed so that
when you close a form, the data is automatically
saved, so there's no need to prompt.

Delegate handling of a new value
For one application, I needed the ability to manage
a complex set of user preferences. The preference
items correlated more or less directly to either ap-
plication object properties or properties of objects
managed by the application object. For example,
one preference addresses how often garbage col-
lection takes place; this property needs to become
the Interval for a timer. By creating an application
 object property for each preference and giving
them Assign methods, I ensured that the appropri-
ate updates happen automatically.

The Library application has only a couple of
items in its Preferences form, shown in Figure 1.
Use large toolbars maps directly to an application
property; it uses BindEvent() to trigger resizing of
the buttons in the toolbar.

The checkbox that controls whether the
 application shuts down after a specifi ed period of
inactivity also maps onto an application property.
However, the timer that tracks inactivity (described
in my May, 2012 article) needs to be appropriately
enabled or disabled when the user changes the
checkbox. Similarly, the spinner that determines
how long to wait for activity needs to set the
 Interval for that timer. (None of this happens until
the user closes the Preferences form.) Both items
use Assign methods to ensure that the appropriate
changes occur.

When the user closes the form, the control
values are stored to corresponding application
properties. (The spinner value is multiplied by
60000, the number of milliseconds in a minute,
fi rst.) The adjusted spinner value is stored in an
application property called nActivityTimerInterval.
The nActivityTimerInterval_Assign method sets
the timer's Interval, as shown in Listing 5. Note
that we need to store the value in the application
property, as well as setting the timer's Interval.
Otherwise, the next time we open the Preferences
dialog, it won't set the spinner to the current value.

L isting 5. This assign method sets the Interval for the activity
timer when the user changes the setting in Preferences.
PROCEDURE nActivityTimerInterval_Assign(;
 nNewValue)
* Something changed interval for activity
* timer. Propagate to timer

IF VARTYPE(m.nNewValue) = "N" AND ;
 m.nNewValue > 0 AND ;
 m.nNewValue <> This.oActivityTimer.Interval
 This.nActivityTimerInterval = m.nNewValue
 This.oActivityTimer.Interval = m.nNewValue
ENDIF

RETURN

The checkbox value is stored to the
lTrackUserActivity property. Its Assign method
enables or disables the timer, as shown in Listing 6.

L isting 6. When the user changes the preference for tracking
user inactivity, the Assign method of lTrackUserActivity fi res.
PROCEDURE lTrackUserActivity_Assign(lNewValue)
* Tracking decision changed. Set up or disable
* timer

F igure 1. The Library application's preferences form relies
on Assign methods to ensure that the inactivity timer is set
appropriately.

September 2012 FoxRockX Page 7

IF VARTYPE(m.lNewValue) = "L" AND ;
 m.lNewValue <> This.lTrackUserActivity

 This.lTrackUserActivity = m.lNewValue
 IF This.lTrackUserActivity
 This.SetupActivityTimer()
 ELSE
 This.DisableActivityTimer()
 ENDIF
ENDIF

RETURN

Check for validity
One of the things you can do with an Assign
method is check the new value of a property for
validity and reject invalid values. For example, I
wrote a Sudoku game in VFP a few years ago (as
a demonstration of business objects). The bizGame
object, which represents the game as a whole, has a
property named nSize that holds the board size (the
number of cells in either direction). Since Sudoku
requires the game size to be a perfect square, nSize
has an Assign method that checks; it's shown in
Listing 7.

L isting 7. The nSize_Assign method of the bizGame object of
a Sudoku application ensures that the specifi ed game size is
valid.
* Ensure that size is a perfect square
LPARAMETERS tuNewValue

IF SQRT(m.tuNewValue) = ;
 INT(SQRT(m.tuNewValue))
 This.nSize = tuNewValue
ENDIF

RETURN

P ropagating data inside a con-
tainer
One of the main ways I use Assign methods is to
push data down a hierarchy inside a container, so
that only the container is exposed to the world.
There are a variety of behaviors along these lines
that are useful.

In my last article, I showed how to use Access
methods to provide dynamic tooltips and to have
the same tooltip for a container and its contents.
Assign provides an alternate way to do the latter, in
situations where you don't need dynamic tips. That
is, this approach works when you want to assign a
fi xed tooltip to a container and have all the controls
inside show the same tip.

This code uses a custom logical property,
lPropagateTooltipsDown, in the base container
class. The ToolTipText_Assign method contains the
code in Listing 8. If the container has the fl ag set to
.T., when the ToolTip changes, we loop through the
objects in the container and change ToolTipText for
each of them.

L isting 8. This code in the ToolTipText_Assign method lets you
propagate a container's ToolTipText to the contained objects.
LPARAMETERS tuNewValue
This.ToolTipText = tuNewValue

LOCAL oObject
IF THIS.lPropagateToolTipDown
 FOR EACH oObject IN THIS.OBJECTS FOXOBJECT
 IF PEMSTATUS(m.oObject, ;
 "ToolTipText", 5)
 * don't use ToolTipText on the right
 * in case there’s an access method
 m.oObject.ToolTipText = m.tuNewValue
 ENDIF
 ENDF
ENDIF

Adjust a label
In one application, I needed to have a label
 running vertically inside a shape. In the relevant
form (shown in Figure 2.), the label's captions are
 determined dynamically based on the data. I cre-
ated a label subclass and gave Caption an Assign
method. That method calls a custom TurnCaption
method to rebuild the caption adding the appropri-
ate punctuation to make it display vertically. For
the double-wide shapes in the top row, the same
method breaks the caption into two strings of about
the same length and builds the appropriate caption
string. TurnCaption is shown in Listing 9.

Fi gure 2. The vertical labels inside the boxes here are set up
by an Assign method.

Page 8 FoxRockX September 2012

Listing 9. This code is called by the Caption_Assign method of
the vertical labels shown in Figure 2. The vertical labels inside
the boxes here are set up by an Assign method..
LPARAMETERS cCaption, lTwoColumns

#DEFINE LF CHR(10)
LOCAL cTurnedCaption, nLength, nChar

m.cCaption = CHRTRAN(CHRTRAN(m.cCaption, ;
 CHR(160), " "), LF, "")
nLength = LEN(m.cCaption)

IF m.lTwoColumns
 * Find a dividing point
 nWords = GETWORDCOUNT(m.cCaption)
 IF m.nWords > 1
 * Break on a word break
 cColumn1 = GETWORDNUM(m.cCaption, 1)
 cColumn2 = ALLTRIM(SUBSTR(m.cCaption, ;
 LEN(m.cColumn1) + 1))
 cNextWord = GETWORDNUM(m.cColumn2, 1)
 nWord = 2

 DO WHILE m.nWord <= m.nWords-1 AND ;
 LEN(m.cColumn1) + LEN(m.cNextWord) <;
 LEN(m.cColumn2) - LEN(m.cNextWord)
 cColumn1 = m.cColumn1 + " " + ;
 m.cNextWord
 cColumn2 = ALLTRIM(;
 SUBSTR(m.cColumn2, ;
 LEN(m.cNextWord) + 1))
 cNextWord = GETWORDNUM(m.cColumn2, 1)
 nWord = nWord + 1
 ENDDO

 nLength = MAX(LEN(m.cColumn1), ;
 LEN(m.cColumn2))

 ELSE
 * Just break it in half
 cColumn1 = LEFT(m.cCaption, ;
 FLOOR(m.nLength/2))
 cColumn2 = RIGHT(m.cCaption, ;
 CEILING(m.nLength/2))

 * Pad shorter string
 cColumn1 = PADR(m.cColumn1, ;
 LEN(m.cColumn2))
 ENDIF
ELSE
 cColumn1 = m.cCaption
 cColumn2 = ""
ENDIF

cTurnedCaption = ""

FOR nChar = 1 TO nLength
 cTurnedCaption = m.cTurnedCaption + ;
 EVL(SUBSTR(m.cColumn1, nChar, ;
 1),CHR(160))
 IF m.lTwoColumns
 cTurnedCaption = m.cTurnedCaption + ;
 CHR(160) + CHR(160) + ;
 SUBSTR(m.cColumn2, nChar, 1)
 ENDIF
 cTurnedCaption = m.cTurnedCaption + LF
ENDFOR

RETURN m.cTurnedCaption

For the Library application, you could use this
code if you want to display books graphically with
titles running down the spine.

The Bottom Line
What BindEvent(), Access methods and Assign
methods all have in common is that they give you
more opportunities to „set it and forget it.“ That
allows you to create classes with complex behavior
that you can control by setting a property or two.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s
Solutions, LLC. She has developed and enhanced nu-
merous Visual FoxPro applications for businesses and
other organizations. Tamar is author or co-author
of about a dozen books including the award winning
Hacker’s Guide to Visual FoxPro, Microsoft Office Au-
tomation with Visual FoxPro and Taming Visual Fox-
Pro’s SQL. Her latest collaboration is VFPX: Open
Source Treasure for the VFP Developer. Her books are
available from Hentzenwerke Publishing (www.hent-
zenwerke.com). Tamar was a Microsoft Support Most
Valuable Professional from the program's inception
in 1993 until 2011. She is one of the organizers of the
annual Southwest Fox conference. In 2007, Tamar re-
ceived the Visual FoxPro Community Lifetime Achieve-
ment Award. You can reach her at tamar@thegran-
ors.com or through www.tomorrowssolutionsllc.com.

DOWNLOAD
Subscribers can download FR201209_code.zip in the SourceCode sub directory of the document
portal. It contains the following files:
tamargranor201209_code.zip
Source code for the article
“Using Assign methods” from Tamar E. Granor
doughennig201209_code.zip
Source code for the article
“Creating ActiveX Controls for VFP using .Net, Part 3” from Doug Hennig
pradipacharya201209_code.zip
Source code for the article
“OS Based Invisible Data Compression in VFP” from Pradip Acharya

